Simultaneous pancreas-kidney transplantation: the role in the treatment of type 1 diabetes and end-stage renal disease

Alex Jiang (Meds 2015), BHSc
Faculty Reviewer: Dr. Patrick Luke, MD, FRCSC (Division of Urology, Department of Surgery)

BACKGROUND

Type 1 diabetes mellitus (DM) is one of the most common chronic diseases of childhood caused by insulin deficiency secondary to autoimmune destruction of pancreatic beta-cells. The condition affects approximately 1.4 million individuals in United States with an annual incidence of 17 cases per 100000 children. Unmanaged, it can lead to severe long-term complications. These include microvascular events, such as retinopathy, neuropathy, and nephropathy, and macrovascular diseases involving cerebrovascular, coronary or peripheral vascular systems. These complications are largely attributed to hyperglycemia resulting from poor insulin secretion. Consequently, the mortality rate for type 1 DM is high - 13% after 20 years of disease.

One of the most significant complications of type 1 DM is end-stage renal disease (ESRD). It initially manifests as microalbuminuria with subsequent progression to proteinuria. Without intervention, 80% of these cases lead to nephropathy and ultimately, ESRD (glomerular filtration rate <15 mL/min/1.73 m²). Eligible patients with ESRD require dialysis or renal transplantation for long-term management.

The Diabetes Control and Complication Trial (DCCT) demonstrated that tight glycemic control, achieved through intensive insulin therapy, slows the progression and reduces the risk of developing micro- and macro-vascular complications. Despite use of insulin pumps and intensive insulin therapy, no exogenous delivery of insulin has been able to sustain normoglycemia as effectively as a functional pancreas. As such, allogeneic pancreas transplantation was developed to achieve normoglycemia and insulin independence. The combination of pancreas and kidney transplantation can render a patient free of both insulin and dialysis with prevention of further diabetic complications, and occasional reversal of established disease.

PANCREAS TRANSPLANTATION HISTORY

The first pancreas transplantation (PT) was performed in 1966 by William Kelly and Richard Lillehei at the University of Minnesota in conjunction with a kidney transplant to treat a diabetic uremic patient. Early procedures were associated with significant morbidity and mortality and performed in low numbers in very select patients. With the advent of cyclosporine and improvements in surgical techniques, one year graft survival rates exceeded 70% in 1980s. To date, more than 32000 cases have been performed worldwide with ever improving outcomes.

Currently, there are three methods of solid organ pancreas transplantation. The majority (83%) of procedures are performed in the context of simultaneous pancreas-kidney (SPK) transplantation where the pancreas is transplanted at the same time as the kidney. The second method is pancreas after kidney (PAK) transplantation (12%) where a pancreas is transplanted to a patient who previously received kidney transplantation. The third method is pancreas transplant alone (PTA) (5%), which involves transplantation of a solitary pancreas to a diabetic patient with normal renal function. This is performed to counteract life-threatening hypoglycemic unawareness or rapidly progressive diabetic complications refractory to intensive insulin therapy.

SELECTION PROCESS

The SPK procedure is usually reserved for a patient with type 1 DM as confirmed by low or absent level of C-peptide. Candidates may also have significant nephropathy or ESRD, along with complications such as hypoglycemic unawareness, recurrent hospitalization from diabetic ketoacidosis, progressive retinopathy, enteropathy and neuropathy.

SURGICAL PROCEDURE

The techniques used for SPK transplantation are diverse and institution-dependent. Most transplant centers use the intraperitoneal approach for graft placement. The pancreas is transplanted to a heterotopic location, usually the right iliac fossa, while the kidney is transplanted to the contralateral iliac fossa. This approach results in fewer peripancreatic fluid collections and wound complications. An alternative approach involves extraperitoneal and ipsilateral placement of both grafts.

Arterial anastomosis may be performed by conjoining the donor superior mesenteric artery and splenic artery to a Y graft of the recipient external or common iliac artery. The donor portal vein is anastomosed to the external iliac vein if systemic drainage is provided. An alternative approach is anastomosis of donor portal vein to superior mesenteric vein if portal venous drainage is available. Although this was performed to reduce lipid dysregulation and rejection rates, contemporary studies have shown very little differences in overall long-term outcomes between systemic and portal drainages.

OUTCOMES

Survival

It is believed that the SPK procedure prolongs patient survival beyond the survival advantage associated with renal transplantation alone. The 5- and 10-year patient survival rates for SPK transplantation is 87% and 70%, respectively. This is significantly better than the survival rates for type 1 diabetics receiving maintenance dialysis and who are on transplant waiting list. However, due to inherent biases in listing candidates for transplants, and the differences in donor age between SPK and solitary kidney (SK) transplant cohorts, the true survival benefit conferred by the pancreas is unknown.

Graft survival rates are excellent. The pancreatic allograft survival rate is 86% at one year and 53% at 10 years while kidney survival rate is >95% at one year and 60% at 10 years. The lower one year graft survival rates for the pancreas are secondary to early transplant compli-
Nephropathy

Most patients with type 1 DM and ESRD receive SPK to improve their renal function. Fioretto et al. reported that 10 years of sustained normoglycemia post-transplant reversed features of diabetic nephropathy.29 It significantly improved glomerular and tubular lesions, and reduced the thickness of glomerular basement membrane and mesangial matrix. A decrease in urinary albumin excretion rate was also observed (20 mg/day vs. 103 mg/day) highlighting improvement in renal function. However, improvements in diabetic nephropathy post-transplant need to be balanced with nephrotoxicity incurred by the use of immunosuppressive agents such as tacrolimus and cyclosporine.30

Retinopathy

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes. Several studies have reported conflicting results about the effects of SPK on retinopathy. However, most recent studies indicate that SPK, with subsequent normalization of blood glucose level, can improve or normalize retinal lesions.31 Following SPK transplantation, 14% of non-blind eyes showed improvement, 76% remained stable and only 10% progressed further.32 A separate study reported an improvement in post-transplant visual acuity in 32% of the eyes and frequency/severity of vitreous hemorrhages in 46% of eyes.33 It may take up to 4 years before noticeable functional improvement in retinopathy and acuity may be observed. Pancreas transplantation, however, cannot reverse established visual loss.

CONCLUSION

SPK transplantation is the most effective treatment for patients with type 1 DM and ESRD. It addresses renal failure and provides physiological means of attaining stable insulin secretion. Although it involves major surgery and is not without risks, it nonetheless increases patient survival, enhances QOL and prevents progression of diabetic complications. As such, they should be considered in all eligible patients.

REFERENCES

FEATURE ARTICLE